Definitions:	
define scalar and vector quantities and give examples;	Scalar: Magnitude without direction Examples: Length, area, volume, distance, speed, mass, density, pressure, temperature, energy, work, power, electrical potential, charge, time Vector: A quantity that has (both) magnitude / size and direction Examples: Displacement, velocity, acceleration, momentum, force (lift, drag, thrust, weight), field(s), a.c. voltage, current (when calculating fields only)
define displacement, instantaneous speed, average speed, velocity and acceleration;	Displacement = (net) distance moved in a particular direction. Instantaneous speed = speed measured between two point a very small time apart Average speed = distance covered / time taken Velocity = speed in a given direction Acceleration is the gradient of a velocity vs time graph. (= change in velocity / time taken)
define the <i>newton</i> ;	The (net) force which gives a mass of 1kg an acceleration of 1 ms ⁻² .
define and apply the <i>torque of a couple</i> ;	one of forces × <u>perpendicular</u> distance (between forces) (Not force x perpendicular distance)
define and apply the <i>moment of force</i> ;	moment = force x <u>perpendicular</u> distance from pivot / axis / point
define thinking distance, braking distance and stopping distance;	Thinking distance: The <u>distance</u> travelled (by the car) from when the driver sees a problem and the brakes are applied Braking distance: The distance travelled (by the car) whilst the brakes are applied and the car stops (wtte) Stopping distance: Thinking distance + braking distance
define work done by a force;	work done = force x distance <u>moved /</u> <u>travelled</u> in the direction of the force
<mark>define</mark> the <i>joule</i> ;	Energy required to move a weight of 1N (through) a distance of 1 m
define <i>power</i> as the rate of work done;	power = work (done)/time or power = energy/time or power = rate of work done
<mark>define</mark> the <i>watt</i> ,	Power required to move 1N through a distance of 1m in 1 sec (Rate of doing work)
define and use the terms stress, strain, Young modulus and ultimate tensile strength (breaking stress); define the terms elastic deformation and	Stress = force/(cross-sectional) area Strain = extension/original length Young modulus = stress/strain / Young modulus is equal to the gradient from stress- strain graph (in the linear region) Ultimate tensile strength = Maximum stress material can withstand (before fracture) Elastic: extension (or compression)
plastic deformation of a material;	(as long as elastic limit is not exceeded)

AS Unit G481: Mechanics

	Plastic: Material does not return to original length / shape/ size (is permanently deformed / longer) when the force / stress is removed
Define density	Density = mass/volume or mass per (unit)
	volume

Derive and apply:				
derive the equations of motion for constant acceleration in a straight line from a velocity against time graph;	Total area under $area = 3/48t^2$ www.thestudentroom.co.uk Area of triangle = $\frac{1}{2}$ (v-u) t [(v-u) = at] = $\frac{1}{2}$ a t^2 Area of rectangle = ut add the two together			
apply the definition of work done to derive the equation for the change in gravitational potential energy;	Work done = force x distance Force = mass x acceleration Weight = mass x gravitational field strength G.P.E. = m x q x h			
apply graphical methods to represent displacement, speed, velocity and acceleration	9			
apply the equations for constant acceleration in a straight line, including the motion of bodies falling in the Earth's uniform gravitational field without air resistance				
apply the equations of constant acceleration to describe and explain the motion of an object due to a uniform velocity in one direction and a constant acceleration in a perpendicular direction	You can talk about 'large' deceleration/acceleration but not 'quick'			
apply the equations for constant acceleration and $F = ma$ to analyse the motion of objects				
apply the principle of moments to solve problems, including the human forearm	Clockwise moment = anticlockwise moment			
apply the idea that work done is equal to the transfer of energy to solve problems				
select and apply the equation for kinetic energ $E_{k} = \frac{1}{2} \text{ mv}^{2}$	У			
select and apply the equation for the change in Earth's surface $E_p = mgh$	n gravitational potential energy near the			
apply the principle of conservation of energy to determine the speed of an object falling in the Earth's gravitational field				
select and apply the relationship for efficiency <i>Efficiency</i> = total input energy ×100% useful output energy				
select and apply the equation $F = kx$, where k is the force constant of the spring or the wire				

Describe:	
describe an experiment to determine the acceleration of free fall <i>q</i> using a falling	Measurements: Height (distance) Time (of fall)
body;	Instruments: Stop watch/timer/clock/video Ruler/tape (measure)
	Calculation: $q = 2s/t^2$ or $q = 2$ gradient of
	$s-t^2$ graph
	g is an estimate: air resistance / drag
	parallax (landing time)
	starting/stopping the clock
	((v+u)/t = s/t, v=u+at, u=0)
	$(s=ut+1/2at^2 (ut=0), s = at^2/2, a(g)=2s/t^2)$
describe the motion of bodies falling in a	Acceleration:
uniform gravitational field with drag;	Terminal velocity:
	Net / total / resultant force (on drop) is zero
	'upward force = downward force' /
describe a simple experiment to determine	weight = drag / weight balances drag
the centre of gravity of an object:	vertical line on the object
the centre of gravity of all object,	Plumb line / 'nendulum' (used to find the
	vertical line)
	Hang from another point / place (and draw
	another vertical line) (wtte)
	Where the lines intersect gives position of
	centre of gravity (wtte)
describe the factors that affect thinking	speed, mass, condition of tyres/tread, condition
distance and braking distance;	of brakes, condition of road (surface), gradient
	of road
	For each factor, correct description of how
	braking distance is affected :
	Greater speed means greater distance OR
	distance ∝ speed
	Greater mass means greater distance OR
	distance \propto mass Worn twree / brokes implies less friction
	therefore greater distance
	Bald tyres
	Wet / slippery / icy road means less friction
	therefore greater distance
	Uphill means shorter distance
describe and explain how air bags, seat	Prevent collision with steering wheel /
belts and crumple zones in cars reduce	windscreen /dashboard
impact forces in accidents;	Time for stopping is more / distance for
	stopping is more / seat belt 'stretches'
	Smaller deceleration / acceleration (of person)
depering how on hoge work, including the	Keierence to K.E.=FS or ½ mV ⁻ =FS
triggering mechanism:	Large deceleration / rapid decrease in speed (triggers the air bag)
	(unyyers une all bay)

	Prevent collision with steering wheel / windscreen / dashboard
describe how the trilateration technique is used in GPS	(Several) <u>satellites</u> used Distance from (each) satellite is determined. Time taken for signal to travel from satellite to car/'delay' time for signal is determined. Distance = c x 'delay' time Position / distance is determined using c / speed of e.m waves / radio waves / microwaves and delay time Trilateration is used to locate the position of the car OR position of car is where circles/spheres cross/intersect.
describe examples of energy in different forms, its conversion and conservation, and apply the principle of energy conservation to simple examples;	
describe how deformation is caused by a force in one dimension and can be tensile or compressive;	
describe the behaviour of springs and wires in terms of force, extension, elastic limit, Hooke's law and the force constant (ie force per unit extension or compression);	Measurement: original / initial length (Not : final length) extension / initial <u>and</u> final lengths, weight / mass Equipment: Micrometer / vernier (calliper) (for the diameter of the wire) Ruler / (metre) rule / tape measure (for measuring the original length / extension) Travelling microscope (for measuring extension) Scales / balance (for measuring the mass & <i>mg</i> equation is used or for measuring weight) / Newton meter (for the weight of hanging masses) / 'known' weights used
describe an experiment to determine the Young modulus of a metal in the form of a wire;	www.thestudentroom.co.uk

AS Unit G481: Mechanics

Determine:

(determine	velocity from the gradient of a displacement against time graph;
(determine	displacement from the area under a velocity against time graph
(determine	acceleration from the gradient of a velocity against time graph.
C	determine	the acceleration of an object in the presence of drag;
C	determine	the area under a force against extension (or compression) graph to find the
١	work done	by the force;

Use:

use correctly the named units listed in this specification as appropriate;				
use correctly the following prefixes and their symbols to indicate decimal sub-multiples or multiples of units: pico (p), nano (n), micro (ì), milli (m), centi (c), kilo (k), mega (M), giga (G), tera (T);	$\begin{array}{c} 10^{12} \\ 10^{9} \\ 10^{6} \\ 10^{3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \end{array}$	tera giga mega kilo centi milli micro nano pico	T G M k c m μ n p	1 000 000 000 000 1 000 000 000 1 000 000 1 000 0.01 0.001 0.000 001 0.000 001 0.000 001 0.000 001 0.000 001
draw and use a vector triangle to determine the resultant of two coplanar vectors such as displacement, velocity and force			F	
select and use the relationships				
acceleration = change in velocity / time to solve problems				
Select and use the equations of motion for constant acceleration in a straight line:				
v = u + at,				
$S = \frac{1}{2} (u + v)t$ $S = ut + \frac{1}{2} at^{2}$				
V = U + 2as select and use the relationship: weight = mass ×acceleration of free fall ($W = mq$);				
use and explain the term terminal velocity.				
draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object;	For ec clockv anticlo point.'	quilibrium vise mor ockwise n	of an nents a nomei	object the sum of about a point = sum of nts about the same

select and use the equation for density:
$\rho = m / V$
select and <mark>use</mark> the equation for pressure
p = F/A
where F is the force normal to the area A
select and <mark>use</mark> the equations for elastic
potential energy
$E = \frac{1}{2} Fx$ and $E = \frac{1}{2}kx^2$

Explain:

explain that some physical quantities consist of a numerical magnitude and a unit	
explain how experiments carried out by Galileo overturned Aristotle's ideas of motion	'heavy' and 'light' objects / different weights / different masses dropped (from leaning tower of Pisa) / rolled down incline plane Objects have the same <u>acceleration (</u> of free fall) Objects hit ground at same time
explain that an object travelling in a fluid	Drag/air resistance/air friction (makes the time longer)
known as drag	drag is proportional to speed ²
explain that a couple is a pair of forces that tends to produce rotation only	A pair of <u>equal</u> and <u>opposite</u> force
explain that both the net force and net moment on an extended object in equilibrium is zero	

Recall and state:

recall that according to the special theory of relativity, <i>F</i> = <i>ma</i> cannot be used for a particle			
travelling at very high speeds because its mass increases			
state the factors that affect the magnitude of	magnitude of Area		
the drag force	Speed/velocity		
	(surface) texture/aerodynamic (shape)		
	Viscosity (of air)/temperature/density		
state that the weight of an object is the gravitational force acting on the object			
state that the centre of gravity of an object is a point where the entire weight of an object			
appears to act			
state the principle of conservation of energy	Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains		
	constant		
	OI		
(total) initial energy = (total) final energ			
state that the efficiency of a device is always less than 100% because of heat losses			
State Hooke's Law	Extension is proportional to force (applied)		
	(as long as the elastic limit is not exceeded)		

Mathematical requirements:

Make suitable **estimates** of physical quantities included within this specification **calculate** the resultant of two perpendicular vectors such as displacement, velocity and force **resolve** a vector such as displacement, velocity and force into two perpendicular components **Solve** problems using the relationship: net force = mass × acceleration (F = ma) appreciating that acceleration and the net force are always in the same direction

analyse and solve problems using the terms thinking distance, braking distance and stopping distance calculate the work done by a force using W = Fx and $W = Fx \cos \theta$

analyse problems where there is an exchange between gravitational potential energy and kinetic energy

calculate power when solving problems

interpret and construct Sankey diagrams